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Abstract
MusicalHeart is a biofeedback-based, context-aware, au-

tomated music recommendation system for smartphones.
We introduce a new wearable sensing platform, Septimu,
which consists of a pair of sensor-equipped earphones that
communicate to the smartphone via the audio jack. The
Septimu platform enables the MusicalHeart application to
continuously monitor the heart rate and activity level of the
user while listening to music. The physiological information
and contextual information are then sent to a remote server,
which provides dynamic music suggestions to help the user
maintain a target heart rate. We provide empirical evidence
that the measured heart rate is 75%− 85% correlated to the
ground truth with an average error of 7.5 BPM. The accu-
racy of the person-specific, 3-class activity level detector is
on average 96.8%, where these activity levels are separated
based on their differing impacts on heart rate. We demon-
strate the practicality of MusicalHeart by deploying it in two
real world scenarios and show that MusicalHeart helps the
user achieve a desired heart rate intensity with an average
error of less than 12.2%, and its quality of recommendation
improves over time.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

General Terms
Algorithm, Design, Experimentation
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1 Introduction
Exercise and heart health are so closely related that it is

common to see modern workout equipment (e.g., treadmill
or elliptical machines), and jogging accessories (e.g. wrist
watches or music players) have built-in receivers that con-
tinuously receive heart rate information from measurement
devices worn on the chest, wrist, or finger. There are, how-
ever, many limitations of these heart rate monitoring devices.
First, the user has to carry an extra device while exercising,
which is an inconvenience. Second, some of these devices
require the user to wear a chest strap, which is not only un-
comfortable, but also requires extra effort to put on and take
off. Third, the best of these devices cost about $400, which
is prohibitively expensive for the average person.

We propose a convenient, non-invasive, personalized,
and low-cost wellness monitoring system, designed to ob-
tain heart rate and activity level information from a pair of
specially designed earbuds while the user listens to music on
a smartphone. An intelligent application on the phone uses
physiological and activity level information from sensors to
recommend, play, and share appropriate music for the user’s
desired intensity level. The system is convenient since the
sensors are embedded into the earphone and the user does
not have to carry (or worry about forgetting to carry) any ad-
ditional device. The system is non-invasive, since wellness
monitoring comes as an additional feature of the earphone
that most of the smartphone users already wear in order to
listen to music. The system is personalized – the user sets his
or her personal goal (such as a target heart rate zone) and the
device recommends and plays appropriate music– consider-
ing his current heart rate, target heart rate, past responses to
music, and activity level. The system is low-cost – the cost
is lower than other standard heart rate monitoring hardware
because it is embedded in the earbud.

We offer a complete system comprised of both hardware
and software components. We introduce the Septimu plat-
form, which consists of a pair of sensor equipped earphones
and a baseboard. Both earbuds contain an inertial measure-
ment unit (IMU), an analog microphone and an LED. The
baseboard drives the sensors and communicates to the smart-
phone via the audio jack. An intelligent music player ap-
plication, MusicalHeart, runs on the smartphone and peri-



odically samples the accelerometer and microphone to de-
termine the activity level and heart rate of the person. The
information is sent to the server over the Internet, and the
server uses it to recommend appropriate music that will help
the user maintain their target heart rate. The system is also
able to predict the heart’s response and enables sharing and
streaming of this situation-aware music.

In order to address the challenges of recommending mu-
sic based on physiological data in real time, we developed
three main algorithmic solutions that will be outlined in this
paper. First, a fast, accurate and real-time heart rate mea-
surement algorithm is described, which extracts heartbeats
from a mixture of acoustic signals from the earbuds. The
algorithm is noise resistant, threshold free, and built upon
dynamic programming principles to find the optimum so-
lution in real time. Second, a simple yet highly accurate,
person-specific, 3-class activity level detection algorithm is
described, which leverages the stable accelerometer read-
ings from the earbuds to detect activity levels and posture
information in real time. The goal of the activity detector
in this work is not to identify specific activity types, but
their categories that have an impact on heart rate. How-
ever, the algorithm is further enhanced by opportunistically
incorporating contextual information – such as the location
and speed of the user – from other in-phone sensors. Third,
a novel control-theoretic approach for recommending music
is described, which constructs a personalized model of each
user’s responses to different music at different activity lev-
els and uses the model to suggest the best music to satisfy a
given heart rate goal.

We design and implement a three-tier architecture for
MusicalHeart. Tier 1 is the firmware, which is written in
nesC (TinyOS) and runs on the Septimu baseboard. Its role is
to drive the sensors, perform on-board processing to reduce
data traffic to the phone, and maintain communication with
the phone. Tier 2 is the smartphone application, which is
written in Java (and native C) and runs on the Android OS. It
implements the key algorithms and manages the communica-
tion with the server. Tier 3 consists of a set of RESTful web
services for extracting and matching music features, music
recommendation, sharing, and streaming. We thoroughly
evaluate the system components and the algorithms using
empirical data collected from 37 participants for heart rate
detection and 17 participants for activity level inference. We
demonstrate the practicality of MusicalHeart by deploying it
in two real-world scenarios and evaluate its performance on
4 users. The main contributions of this paper are:
• Septimu, the first wearable, programmable hardware

platform designed around low-cost and small form-factor
IMUs and microphone sensors that are embedded into
conventional earphones, and communicate to the phone
via the audio jack.

• MusicalHeart, a complete sensing system that monitors
the user’s heart rate and activity level – passively and
without interrupting the regular usage of the phone –
while the user is listening to music, and recommends
songs based on the history of heart’s response, activity
level, desired heart rate and social collaboration.

• We devise three novel algorithms: (1) a threshold free,
noise resistant, accurate, and real-time heart rate mea-
surement algorithm that detects heart beats from a mix-
ture of acoustic signals from the earbuds, (2) a simple
yet highly accurate, person-specific, 3-class activity level
detection algorithm that exploits accelerometer readings
from the earbuds, and (3) a PI-controller that recom-
mends music to the user based on past history of re-
sponses to different music and helps maintain the target
heart rate at different activity levels.

• We perform an empirical study by collecting ground
truth data of heart rates, and summarizing it to show
the effect of music on heart rate at various activity lev-
els. The dataset is further used to show that the detected
heart rate is 75%− 85% correlated to the ground truth,
with an average error of 7.5 BPM. The accuracy of the
person-specific, 3-class activity level detector is on av-
erage 96.8%, where these activity levels are separated
based on their differing impacts on heart rate.

• We demonstrate the practicality of MusicalHeart by de-
ploying it in two real world scenarios, and show that Mu-
sicalHeart helps the user in achieving a desired heart rate
intensity with an average error of less than 12.2%, and
the quality of recommendations improves over time.

2 Usage Scenarios
We describe two motivating scenarios of MusicalHeart

which are realized and evaluated later in Section 9.

2.1 Personal Trainer: Goal-Directed Aerobics
Alice exercises regularly. Today she wants to practice

cardio exercise by going for a jog. She starts the Musical-
Heart application on her smartphone and sets her goal to
cardio. The system initially detects that Alice is standing
still and her heart rate is in the healthy zone (50% of maxi-
mum rate). The app creates a playlist of songs dynamically
and starts playing one that helps Alice to warm up and attain
the heart rate for cardio. Alice then starts jogging while the
app keeps monitoring her heart rate and activity level. Af-
ter a few minutes, the app automatically detects that Alice’s
activity level has changed to a higher level. It dynamically
adjusts the playlist according to the new activity level and
current heart rate, so that the next song played is suitable for
Alice’s changing exercise intensity. The system keeps doing
this until Alice’s jogging session is over. In the end, it adds
one more entry into Alice’s health journal that keeps her up-
to-date about her heart health and exercise history.

2.2 Music Recommendation: Biofeedback
and Collaboration

Bob is a middle-aged person who takes the bus on his
way home every evening. He enjoys listening to music dur-
ing this idle time to get some relief after a long tiring day.
But he is bored with all the songs that are on his mobile de-
vice since he has listened to them at least a hundred times.
Today he wants to try some new music, but it has to be some-
thing appropriate for the moment– a calm and heart soothing
song. He opens up the MusicalHeart application and notices
that it already knows about his activity level and context (i.e.
traveling). The app connects to the server and obtains a list



of melodious and heart softening songs– including some of
Bob’s favorite titles and novel songs shared by other travel-
ers who enjoy similar music at this activity level. Bob wants
to try one of the new titles and the sever starts streaming the
song. While Bob is enjoying the new songs, the app is con-
tinuously monitoring his heart’s responses and reporting the
information back to the server for use in future recommen-
dations.
3 Background

In this section, we make the reader familiar with some
concepts related to measurement of heart rate, features of
music, and heart rate training zones that are used in the paper.
3.1 ECG, Heart Beat and Pulse
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Figure 1. The interval between consecutive R waves de-
termines the heart rate.

The electrocardiogram (ECG) is the most reliable tool for
assessing the condition of the heart and measuring the heart
rate. Getting an ECG reading is a non-invasive procedure in
which a set of electrodes is attached to specific regions of a
body to record the electrical activity of the heart. Figure 1
shows a portion of an ECG record comprising of four con-
secutive heartbeats. The various waves (or, peaks) that are
seen on a heartbeat are historically denoted by the letters: P,
Q, R, S, and T. R waves are more visible than others in an
ECG record. Hence, the instantaneous heart rate is usually
obtained by taking the inverse of the time interval between
two consecutive R waves. Since the instantaneous heart rate
varies with respiration, the average of 30−60 instantaneous
readings is taken to obtain the average heart rate, expressed
in beats per minute (BPM). While the heart rate directly
refers to the frequency of the heart’s beating, the pulse, on
the other hand, is the contraction and expansion of an artery
due to the beating of the heart. The heart rate and the pulse
rate are usually the same – unless for some reason, blood
finds it difficult to pass through the arteries. Pulses can be
felt on different parts of the body, e.g., neck, wrist, and ears.
3.2 Tempo, Pitch and Energy

As with human heartbeats, the rhythmic, repetitive and
recognizable pulsating sound in music, often produced by
percussion instruments (e.g., drums), is called the beat. The
tempo of a song is the indicator of the number of beats played
per unit time. The tempo of a music is similar to heart
rate in human and has the same unit, i.e. beats per minute
(BPM). The pitch is related to the frequency of the sound
wave, and is determined by how quickly the sound wave is
making the air vibrate. The energy of a signal is computed
simply by taking the root average of the square of the ampli-
tude, called root-mean-square (RMS) energy. Figures 2(a)
and 2(c) show the time domain and frequency domain char-
acteristics of a 40-second slice of music. Figure 2(b) shows
the effect of increasing the tempo and Figure 2(d) shows the
effect of increasing the pitch of the music. Increasing the
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Figure 2. Illustration of tempo and pitch of music.

tempo squeezes the samples into a shorter duration, and in-
creasing the pitch shifts the power spectrum towards a higher
frequency.
3.3 Heart Rate Training Zones

Depending on the amount of effort (intensity) a person
spends during exercise, he or she can be at different heart
rate training zones. Heart rate training zones are expressed
in terms of the percentage of the maximum heart rate of a
person. The maximum heart rate of a person can either be
directly measured or be computed using Miller’s formula:
HRmax = 217−age×0.85. Table 1 shows 5 heart rate zones,
the intensity ranges and their corresponding effects. The tar-
get heart rate of a person given the intensity value, I, is cal-
culated by: HRtarget = HRrest +(HRmax−HRrest)× I.

Zone Effect
Healthy Strengthens heart, improves muscle mass.

50%−60% Reduces fat, cholesterol, and blood pressure.
Temperate Basic endurance.

60%−70% Fat burning.
Aerobic Strengthen cardiovascular system.

70%−80% Step up lung capacity.
Anaerobic Getting faster.

80%−90% Getting fitter.
Red Line Working out here hurts.

90%-100% Increased potential for injury.
Table 1. Heart rate training zones.

4 System Architecture
We present a brief description of our system architecture

in this section. We describe the hardware platform, soft-
ware running on the smartphone, and services that run on
the server. We defer the algorithmic details to subsequent
sections.
4.1 The Septimu Platform

We introduce Septimu, which is a redesigned earphone
accessory unit for smartphones that enables continuous in-
situ wellness monitoring without interrupting the regular us-



Figure 3. The Septimu hardware platform.

age of the earphone. It is a redesign of the conventional ear-
phone that has additional sensors and communicates with the
smartphone via the audio jack interface. Septimu consists of
a hardware and a software system. The hardware is com-
prised of two sensor boards, which are embedded into two
earbuds, and a baseboard that collects data from the earbuds
and communicates with the smartphone. The current sen-
sor board incorporates an IMU (3-axis accelerometer and
gyroscope), an analog microphone and a LED. The base-
board contains a microprocessor (TI MSP430F1611) and pe-
ripheral circuits to communicate with the audio jack on the
mobile device using HiJack [23]. However, we could not
achieve simultaneous communication and power harvesting
from the audio jack as described in [23]. We believe this is
the limitation of the phones that we tried which are different
from the ones (i.e. iPhone) used in their work. Current ver-
sion of Septimu is powered by a thin film battery. Figure 3
shows the two earbuds and the baseboard. The earbuds, with
all the added sensors, has a dimension of 1×1 cm2.

The software running on the Septimu baseboard is based
on TinyOS. The microprocessor samples the IMU through
I2C bus 25 times per second on each sensor board, with a
full scale of ±2g/s for accelerometer and ±250 degree/sec
for gyro. Data in the microprocessor is transmitted to mobile
phone via microphone tip on the audio jack with Manchester
coding, i.e., a logic 0 is represented by a High-Low sequence
and a logic 1 is represented by a Low-High sequence. Each
byte of samples is sent from the LSB, together with a start
bit, a stop bit, and a parity bit. The output is generated at a
general IO port on microprocessor and the transmission rate
is controllable by software. Septimu communicates with the
phone via a digitally controlled multiplexer, to deliver both
digital data from the IMU and analog audio data from the
microphone in a time-multiplexed manner. The IMU sen-
sor data is reliably transmitted at up to 500 bytes per second
while microphone is sampled at 44.1 kHz.

4.2 Processing on Smartphone
The MusicalHeart application runs on the smartphone. It

uses data from the Septimu sensors to measure heart rate and
to detect activity levels. It also uses other in-phone sensors
to obtain contextual information. Based on all of this infor-
mation, it then suggests a list of music to the user. Figure 4
shows a schematic of the software architecture of the appli-
cation. A complete walk through of the data flow and data

processing follows.
1. The user starts the MusicalHeart application on the

smartphone which is connected to Septimu. The user may
specify a goal, e.g., the target heart rate zone. By default,
the system uses the user’s current activity level as a basis to
suggest music.

2. The application starts a SensorDataDispatcher service
which generates 4 sensor data streams. The first two streams
correspond to the IMU and the microphone units of Septimu.
The other two streams correspond to the in-phone GPS and
the WiFi scan results. The GPS and WiFi being power hun-
gry are sampled once per minute and more frequently only
when the user is detected to be moving. The streaming rate
of the Septimu IMU is 50 Hz, while the maximum sampling
rate of the microphone is 44.1 KHz.
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Figure 4. System diagram of MusicalHeart.

3. The sensor streams are consumed by 3 processing
units. The HeartRateDetector component processes the Sep-
timu’s microphone data to obtain the heart rate using the al-
gorithm described in Section 5. The ActivityLevelDetector
component processes the Septimu’s IMU data to obtain the
activity level of the user. The GPS and WiFi data are pro-
cessed by the ContextDetector component to obtain contex-
tual information, such as the location (indoor vs. outdoor)
and speed of the user. The details of the activity level and
context detection algorithms are described in Section 6.

4. The Combiner component combines the processed
data obtained from the three processing units into a time se-
ries of 3-tuples (Heart rate, Activity Level, Context). It main-
tains an in-memory circular queue to hold the tuples that are
generated during the last 10 minutes. Thus the Combiner
possesses the high level information of the user, i.e., what
activity level the person is in, what the heart rate is, and any
contextual information such as whether is at home, or travel-
ing.



5. The MusicRecommender is responsible for suggest-
ing music to the user and playing the song. It has a music
player which is an extension of an ordinary music player, but
with the added capability of loading and playing songs based
on biofeedback. It kicks in once prior to the end of a song
and consults the Combiner to get user’s information during
the last song. It computes a report consisting of the heart rate
information (start, end, minimum, maximum, average, fall
time, and rise time), activity level (low, medium and high),
contextual information (location, and velocity), and the user
specified goal. All this information is sent to the server via
a proxy. The proxy is responsible for maintaining commu-
nication with the server and obtaining the suggestion for the
next song to be played.
4.3 Web Services
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Figure 5. Web services in MusicalHeart.

There are several advantages for storing and serving the
MusicSuggestionService on the Web. If the information gath-
ered by the Combiner exists in a shared location, the system
can leverage the learned parameters from how people will
generally react to a particular song offering better sugges-
tions in the future.

To implement this, we pushed the MusicSuggestionSer-
vice onto a RESTful Web Service that runs on a web server
as shown in Figure 5. Our particular implementation uses
a WEBrick server to expose a HTTP interface to the smart-
phone. During each song, the Combiner reports the user au-
thentication, song ID, current heart rate and activity level in-
formation to the MusicSuggestionService in a POST request.
Next, important features related to the song are fetched from
a Music Information Retrieval database. There are several
tools, e.g., openSMILE, MIRToolbox, jAudio that can ex-
tract musical features to create a custom feature database.
However, we use the EchoNest web service that already has
the data for 30 million songs. When an artist and title of a
song is given, a report of the song’s tempo, pitch, energy,
loudness, and musical mode is returned as a JSON object.
This information is used by the MusicSuggestionService to
make a prediction for the appropriate song to play when a
particular target heart rate is requested. The details of the al-
gorithm is described in Section 7. When a song is selected,
it is delivered to the smartphone either from the user’s cloud
drive, or is played from a local MP3 file on the smartphone.
5 Heart Rate Measurement

A tiny microphone is embedded inside Septimu which
utilizes an in-ear design. This forms a resonant chamber in-
side the ear, amplifying the sound of heart beats. We have
chosen acoustic sensing because of its potential use as a clin-
ical stethoscope. Other sensing methods, such as IR-sensors,

do not offer such opportunities and thus limit our possibil-
ities. However, we show a comparison of the acoustic and
IR-based heart rate detection techniques in Section 8.4.

Heart beat detection algorithms [17, 31] that are used to
detect R waves in an ECG do not work for our problem due
to the varying nature of the received signals and the presence
of noise. ECG waves are stable and uniform in nature, and
ECG is performed in a very controlled environment such as a
hospital. In our case, the received signals differ in shapes and
sizes as different people have different sizes of ear canals.
The received signal also depends on how tightly the earbuds
fit in someone’s ear. Furthermore, our system is designed
to support detection of heart beats even when the person is
engaged in high levels of activities. These call for a new
algorithm that is accurate and robust to detect heart beats
from acoustic signals from the ear.

The raw audio samples that we collect from the micro-
phone is a mixture of the music, the heart beats, human
voices and other background noise. Measuring the heart rate
from the audio samples is a two-step process – (1) Filtering:
separating the heart beats from other signals, and (2) Detec-
tion: identifying the R waves and measuring the heart rate.
5.1 Filtering

Our heart beats in a specific rhythm. The resting
heart rate of an adult person lies somewhere in between
40− 100 BPM, and the rate may reach up to 220 BPM
during exercise. To extract the signals corresponding to
the heart-beats, we eliminate any signal whose frequency
is higher than the cutoff frequency, fc = 3.67 Hz, cor-
responding to the maximum 220 BPM. Since the micro-
phone sensor has a sampling frequency, fs = 44.1 KHz, the
normalized cutoff frequency of the low-pass filter is cal-
culated by: Wn = 2× fc

fs
= 1.66× 10−4. In our imple-

mentation, we use a second order Butterworth filter. The
filter coefficients, a = [1.0000,−1.9993,0.9993] and b =
10−7× [0.0680,0.1359,0.0680], are obtained from the stan-
dard chart for Butterworth filters and are plugged into the
standard difference equation to filter out the unwanted sig-
nals.

Figure 6 illustrates the effect of applying the filter on a
mixture of music and heart beat signals. The duration of
the experiment is 15 seconds and the presence of music is
from 6− 12 seconds. We see that the heart beat signals are
clearly visible after the filtering. Due to some higher order
harmonics of the music, the heart beat attains a constant gain.
But this does not affect heart rate since the gain is only in the
amplitude of the signal which does not affect the rate.
5.2 Detection

The heart beat detection algorithm takes an array of sig-
nal amplitudes with timestamps as inputs and returns the po-
sitions of the detected beats. The algorithm is applied on a
fixed sized time window of 10 seconds. The smartphone ac-
cumulates 10 seconds of signals and the following steps are
performed to detect the beats:

1. Selection: A set of candidate R waves is selected by
taking the peaks that are at least one standard deviation larger
than the mean. R wave being the largest, this step practically
never misses any of them.
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Figure 6. Heart beats are extracted from the mixture of
heart beats, music and noise by low-pass filtering.

2. Matching: Each of the candidate R waves is matched
to its nearest S wave. Since an R wave is a local maxima, the
next local minima is the corresponding S wave. We denote
the set of RS pairs with χ.

3. Quality Assignment: Each RS pair, xi ∈ χ is assigned
a real number, q(xi) ∈ [0,1], which is its normalized peak-
to-peak distance. The closer the value is to unity, the more
likely it is to be an actual heart beat.

4. Dynamic Programming: Given the timestamps,
{t(xi)} and the quality values, {q(xi)} of all the candidate
RS pairs, our aim is to find the subset, {xi} ⊂ χ, which con-
tains all (and only) the actual heart beats.

There are 2|χ| possible subsets that could be a possible
solution. In order to find the optimum one, at first, we quan-
tify the candidate solutions using two metrics based on the
following two properties of the optimum solution:

Property 1: The variance of the time differences,
∆t(xi,xi−1) between two consecutive R waves, xi and xi−1,
in the optimum solution, is minimum.

Property 2: For two solutions with the same variance,
the optimum one has the larger sum of quality.

The first property comes from the fact that the heart beats
are periodic and there is hardly any change in the heart rate
within the 10 seconds time window. Our empirical study in
Section 8.3 shows that it takes about 25−50 seconds to see
any noticeable change in heart rates. The second property
ensures that we take the beat sequence with a smaller period,
which has the larger sum of qualities. Hence, we define the
following metrics for X ⊂ χ:

Q(X) = ∑
x∈X

q(x), and V (X) = ∑
xi,xi−1∈X

∆t(xi,xi−1)
2 (1)

A brute force algorithm to find the optimum solution is to
compute V (X) for all 2|χ| subsets, and take the one that has
the minimum V (X) while breaking any tie by choosing the
one with the largest Q(X). But this is impractical, since even
for a 10 second window, the size of the search space may
exceed 236 in the worst case. Instead, we simplify the search

by dividing the search space. Each of the subspaces corre-
sponds to a particular value of heart rate within the range of
40−220 BPM. The search is performed using the following
dynamic programming approach.

Let us assume, we know the heart rate in advance. This
gives us |X |, i.e., the number of actual heart beats in χ, and
also sets the minimum time interval between two consecutive
beats. We define f (i,k) as the cost of selecting k beats out
of the first i ≤ |χ| candidates. We now apply the following
recurrence equations to find the optimum value of f (|χ|, |X |),
which is the Q(X) for a given heart rate:

f (i,k) =


max
1≤ j≤i

{q(x j)}, if k = 1, i≥ 1

max{ f (i−h,k−1)+q(xi),

f (i−1,k)}, if 1≤ k ≤ i, i≥ 1
−∞, otherwise

(2)
Here, h ensures the minimum time interval constraint; it

denotes the number of previous candidate beats to skip in
order to maintain the given heart rate. Once we have the op-
timum solution we compute V (X) using the selected beats.
We solve the above recurrence once for every heart rate val-
ues in the range 40−220 BPM, and the one that gives us the
minimum V (X) is the heart rate of the person. Ties are bro-
ken with the largest Q(X). Note that, if we only maximize
Q(X) without considering V (X), the algorithm will greedily
choose all candidate R waves; the job of V (X) is to discard
the false peaks that are out of rhythm.

Time Complexity: Let, s, c, and b be the number of
samples, candidate beats, and actual beats, respectively. The
complexity of selection and matching steps is O(s), quality
assignment is O(c), and the dynamic programming is O(cb).
Since c≥ b, the overall theoretical worst case time complex-
ity is O(s+c2). However, for a 10 seconds time window, we
have 6 ≤ b ≤ 37, which is essentially a constant. A candi-
date beat that is not an actual R wave is either a high peaked
T wave that immediately follows an R wave, or the shadow
of the R wave (called R′ in medical literature). The wave
form being periodic, assuming c a constant multiple of b, the
overall time complexity is practically O(s).

6 Activity and Context Detection
A pair of IMUs are embedded inside Septimu, which al-

lows us to infer the activity level of the user. Combined with
existing sensors on the phone, we are able to detect the con-
text of the user which enables more suitable music recom-
mendations.

6.1 Activity Level Detection
The activity level is an important indicator of what kind

of music a person may prefer. For example, when a person is
jogging, which is a high activity level, he may prefer music
with faster rhythms. On the contrary, when a person is sitting
and is at rest, he may prefer slower music. A person’s activity
level is considered to suggest appropriate songs. We use ac-
celeration collected from the earbuds to detect the wearer’s
activity levels, which are divided into three categories: (1)
L1: low level, such as lying and sitting idle; (2) L2 : medium
level, such as walking indoors and outdoors; and (3) L3: high



level, such as jogging. We use standard machine learning
techniques to distinguish the activity levels.
6.1.1 Feature Extraction

Given the raw 3-axis accelerometer data from the Sep-
timu sensors, we extract the feature values using the follow-
ing steps:

Step 1: For each 3-axis accelerometer data sample,
(ax,ay,az) from the ear buds, we calculate the linear mag-

nitude of acceleration: |aear|=
√

a2
x +a2

y +a2
z .

Step 2: The standard deviation of |aear| within each 1
second time window (i.e. 50 samples) is calculated – which
is our feature value, xi.
6.1.2 Training and Classification

Instead of using a generic threshold, we train an unsuper-
vised learner so that our activity level detection is person spe-
cific. We use k-means clustering algorithm to cluster {xi}’s
to find out the 3 cluster means corresponding to 3 activity
levels.

Given the 3-axis accelerometer data from the Septimu
sensors for T seconds, the steps classifying the activity level
are described as follows:

Step 1: We obtain a set of T values, {xi}, one value for
each second, following the same procedure as the feature ex-
traction stage.

Step 2: Each of these xi’s is then classified considering
their minimum distance from the cluster heads obtained dur-
ing the training.

Step 3: We take a majority voting to determine the most
likely activity level of the person over the T seconds dura-
tion.

In our implementation, we choose the value of T to be
60 seconds, because a more fine grained activity level detec-
tion is not necessary in our application. We are concerned
about the user’s activity level during the duration of a song.
If a user, for example, stops for moment to tie his shoelaces
during jogging, we classify the entire duration as L3 activity.
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Figure 7. The standard deviation of accelerometer read-
ings are used to distinguish among the activity levels.

As an illustration of the algorithm, in Figure 7, we plot
the standard deviations of accelerometer readings at each
second during a 7 minute long experiment performed by one
of our participants. The same trend is observed when we
tested our algorithm on 17 participants; see Section 8.5. The
user performs this sequence of activities: sitting, walking,
jogging, sitting, jogging, walking, and sitting. We see a clear
distinction among the 3 activity levels.
6.2 Augmenting Activity Levels with Contexts

Adding contextual information along with the activity
levels makes the system more intelligent in choosing mu-

sic. For example, sitting at home and sitting inside a bus are
both level 1 activities. But if we can differentiate between
these, we can suggest music based on the context – e.g. what
music is listened to by other users during traveling, vs. when
they relax at home. Since there are infinite possibilities, we
conduct a survey on 208 people, asking one simple question
– when do you listen to music the most? The users were
allowed to mention at most 5 contexts. The summary of re-
sponses results in a list of the 7 most common contexts and
is shown in Table 2.

Context Description Poll Result
LIE Lying on bed 14%

SEATED Sitting idle, or taking a break at desk 41%
TRAVEL Traveling by bus, or car 24%

SLOWMOVE Waiting at bus stop, walking on campus 7%
BIKE Biking 2%
GYM Exercising at gym 6%
JOG Jogging or running 4%

Table 2. Activity contexts and corresponding poll result.

We augment activity levels with 3 types of information
that helps to distinguish among the 7 activities: indoors/out-
doors, velocity, and head angle (Septimu accelerometer’s
pitch and roll angles). Table 3 presents the context detection
technique in a tabular form.
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Figure 8. The roll and pitch angles obtained from Sep-
timu are used to differentiate between sitting and lying.

Context Activity Lev In-Out Velocity Roll, Pitch
LIE L1 Indoor - >−1.5,> 0.5

SEATED L1 In/Out - <−1.5,< 0.5
TRAVEL L1 Out > 25 mph -

SLOWMOVE L2 In/Out < 3 mph -
BIKE L2 Out < 15 mph -
GYM L3 In - -
JOG L3 Out - -

Table 3. The context detection algorithm is shown in a
tabular form. Dashed entries are don’t cares.

To implement this, we detect whether a person is indoors
or outdoors, and measure his velocity, roll and pitch angles.
We rely on Android’s location service to periodically ob-
tain the location updates from its location providers once per
minute. The pitch and roll angles of the accelerometer data is
used to distinguish between lying and seated contexts. Fig-
ure 8 shows an example scenario where one of our partici-
pants lies down straight from a seated position. The earbuds
being stably situated, we observe the same trend in all 17
participants. Based on the empirical measurements, we use



𝐸(𝑧) 

𝐼 =  𝐾𝐼 𝑒(𝑗)

𝑘

𝑗=1

 

𝑃 =  𝐾𝑃 ∗ 𝑒(𝑡) 

𝐺(𝑧) 
    

𝑌(𝑧) 𝑅(𝑧) 𝑈(𝑧) 
+ 

+ 

+ 

− 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 

Figure 9. The PI controller uses the desired and current
heart rate to suggest appropriate music.

static thresholds of −1.5 for roll and 0.5 for pitch angles.
The thresholds are fairly conservative and unlikely to make
errors unless the earbuds are deliberately worn in an unusual
way (e.g. upside down).
7 Music Suggestion and Rating

We describe a feedback control theoretic approach for
suggesting music to the user. Existing approaches [29, 30,
12] apply simple rules of thumb to suggest music, i.e., sug-
gest the next song with a higher (or lower) tempo if the heart
rate is falling behind (or rising above) the desired rate. Al-
though none of these works are built upon any sound math-
ematical basis, typically they mimic proportional controllers
(P-controller) when viewed in the light of control theory.
These controllers therefore suffer the same inherent prob-
lems of any P-controller. They are too responsive to the con-
trol input (harmful for human as the heart has to respond very
fast to the changed music), have non-zero steady state error
(harmful because the heart rate may settle at a different rate
in the steady state), and have no memory of the past (does not
consider the effect of heart’s response to the previous song).
7.1 PI-controller Design

We propose a Proportional-Integral Controller (PI Con-
troller) in order to achieve the desired heart rate in human
by correctly selecting the music. A PI-controller is a nice fit
to our problem since it has a slower response time than a P-
controller, a minimum steady state error, and takes the past
errors into account. These are desirable properties of our
music suggestion algorithm as they provide a slower change
in heart rate which is comfortable for the user, attain the de-
sired heart rate with minimum error, and consider the errors
that are made in the previous stages. We now describe the
design of the controller in detail.
7.1.1 Model

Figure 9 shows a schematic diagram of the PI-controller.
The process having the transfer function G(z), represents the
part of the human heart that is sensitive to music. The in-
put to the process, U(z), represents the suggested change in
the feature of music, the output, Y (z), represents the current
heart rate, R(z) represents the desired heart rate, and E(z)
represents the difference between the two rates. KP and KI
are the coefficients of the P- and I-controllers that we are go-
ing to compute. The transfer function of the PI-controller
is:

U(z)
E(z)

=
(KP +KI)z−KP

z−1
(3)

And the transfer function [20] of the feedback loop is:

FR(z) =
[(KP +KI)z−KP]G(z)

(z−1)+ [(KP +KI)z−KP]G(z)
(4)

7.1.2 System Identification
System identification is the empirical procedure to model

the empirical transfer function of the system being con-
trolled. In our system, we model it by empirically estimating
the change in heart rate when there is a change in control
input which is a function of the features of the music. We
assume a first order system with the transfer function:

G(z) =
A

z−B
(5)

Taking the inverse z transform of Eq. 5, we get the system
response in time domain:

y(k+1) = Au(k)+By(k) (6)

We define u as a linear combination of 3 features of mu-
sic: tempo ( f1), pitch ( f2), and energy ( f3), and express it
by: u = ∑αi fi. It can be thought of as a composite feature of
a song that has linear effect on changing the heart rate. The
coefficients, αi are estimated by applying linear regression
on the empirical heart rate responses from all users. While
the definition of u is generic, the values of A and B parame-
ters are person specific. For each user, these parameters are
recomputed by the server after each use of the application.
When a user finishes listening to a song, the server computes
u(k) of the song, and adds u(k), y(k), and y(k+ 1) into the
person’s history. This history is then used to estimate A and
B using least squares regression.
7.1.3 Design Goals

There are four design goals that need to be specified in
designing any controller: stability, accuracy, steady state er-
ror and overshoot. These are summarized in Table 4. The
stability of the controller is achieved when the poles of Eq. 4
are within unit circle [20]. We allow a steady state error of
5 BPM. The settling time of 1 unit means the duration of a
single song, and we allow a maximum overshoot of 10%.

Goal Requirement
Stability Poles of FR are inside unit circle.
Accuracy Steady-state-error < 5 BPM

Settling Time ks ≤ 1
Overshoot MP < 0.1

Table 4. Design requirements of the PI-controller.

7.1.4 Characteristic Polynomials
Using the desired properties of the system from Table 4,

we compute the desired poles, e± jθ, of the system as:

r = e−4/ks = 0.018 (7)

θ =
π ln(r)
ln(MP)

= 5.458 (8)

The desired characteristic polynomial having these two
poles is:

(z− re jθ)(z− re− jθ) = z2−0.025z+0.00034 (9)



The modeled characteristic polynomial as a function of
Kp and KI is obtained by substituting G(z) in Eq. 4 and taking
the denominator of the system transfer function, FR(z):

z2 +[A(KP +KI)− (1+B)]z+(B−AKP) (10)

Equating the desired polynomial to the modeled polyno-
mial, we solve for KP and KI to obtain:

KP =
B−0.00034

A
, and KI =

0.9755
A

(11)

7.2 Automated Music Rating
The server only has knowledge of the user responses to

a song if that song has ever been listened to by the user. For
each such song, a personalized rating is automatically com-
puted by the system. A song gets different ratings at dif-
ferent activity levels and desired goals based on the steady
state BPM error that it makes. We rate each song in a linear
scale of 0−5, where 5 corresponds to BPM error < 5, and 0
corresponds to BPM error of 20 or more.

For the songs that the user has not yet listened to, but
some other user of MusicalHeart has, we estimate their ex-
pected rating by considering the similarities among songs
and other user’s ratings. Given a set of rated songs {si},
and their corresponding ratings, {ri}, the expected rating of
an unknown song, su at the same activity level with the same
goal is computed by:

r̂(su) = α∑r(si)p(si,su)+(1−α)r̄(su) (12)

Where, p(si,su) is the Bhattacharyya coefficient [4]
which computes the similarity score between two songs, r̄
represents the average rating of the song by other users, and
α controls how much we want to rely upon other users’ feed-
back. Each song is represented by a 3 element feature vector
corresponding to the tempo, pitch, and rms-energy of the mu-
sic. The value of α is a function of amount of rated song by a
user. Initially, α is set to 0.1, and is linearly incremented up
to 0.7 when the number of rated songs exceeds 100. Hence,
in the long run up to 30% of the suggested songs come from
other user’s responses.
8 Technology and Algorithm Evaluation

We describe three sets of experiments in this section.
First, we evaluate the performance of Septimu hardware and
firmware. Second, we describe and summarize the findings
of our empirical study which is used as the empirical dataset
for other experiments. Third, we describe a set of experi-
ments where we use the empirical data to evaluate the per-
formance of the heart rate measurement, activity level detec-
tion, and context detection algorithms.
8.1 Experimental Setup

The experiments are performed using multiple Android
Nexus S smartphones that run Android OS (Gingerbread
2.3.6). The devices use WiFi 802.11 b/g connectivity and are
equipped with a 1GHz Cortex A8 processor, 512 MB RAM,
1 GB Internal storage, and 13.31 GB USB storage. Note that,
Septimu is generic hardware platform that does not require
any specific operating system such as Android. Septimu even
works with desktop computers without any change. It is just
that our particular implementation of MusicalHeart is done

on Android for a demonstration. The web server run on a
computer running Ubuntu Linux 11.10 with 4Gb of RAM
and a AMD Phenom X3 processor.
8.2 Evaluation of Septimu Platform
8.2.1 Data Transmission

To measure the maximum data rate, we send a known bit
pattern (0xA5A5) from the microprocessor to the smartphone
at varying rates and check the decoded data on receiver side
to calculate the bit error rate (BER). We keep transmitting
data for 120 seconds at each rate. Figure 10 shows that Sep-
timu has almost zero (10−5) bit error up to 5.56 kbps. At
a data rate of 5.56 kbps or more, the BER increases and
keeps rising. The limitation comes from the limited process-
ing ability of MSP430. However, in our system, we use a
data rate of 3 kbps which is sufficient for our application and
ensures minimum error.
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Figure 10. Bit error rate (BER) becomes significant when
the data rate is higher than 5.56 kbps.

8.2.2 Energy Consumption and Memory Footprint
We measure the power consumption of Septimu hard-

ware and the android mobile device with a power meter [3].
The Septimu consumes 42 mW power in a battery powered
case. For the mobile device, the power measurements are
summarized in Table 5. The estimated battery-life of a smart-
phone (having a 1500 mAh battery) with Septimu connected
is about 22 hours.

State LCD Audio Septimu Power
Standby off off disconnected < 15 mW

Home Screen on off disconnected 420 mW
app off on disconnected 200 mW
app off on connected 250 mW

Table 5. Power draw breakdown of the application run-
ning on an Android phone (Samsung Nexus S).

We obtain the memory usage of Septimu firmware from
the compiling information in TinyOS. Out of 10 KB ROM
and 48 KB RAM of the MSP430, Septimu uses only 5.8 KB
of ROM, and 288 bytes of RAM.
8.3 Empirical Study

We perform an empirical study involving 37 participants,
in which, we measure their heart rates during three different
levels of activities, and both with and without the presence
of music. The activity levels corresponds to {lying, sitting
idle}, {walking indoors and outdoors}, and {jogging}. The
number of participants in each activity level are 17, 10, and
10, respectively. The participants listen to different types
and numbers of music items during multiple sessions. Each



of these sessions is 10− 60 minutes long. The durations of
the songs are about 2− 5 minutes and there are about 1− 5
minutes gaps in between two songs. The collection of songs
comprises of the most watched 100 songs in year 2011 on
YouTube. The songs vary in genre, language, length, and
volume level. The group of participants is comprised of un-
dergraduate and graduate students, researchers, profession-
als, and their family members. Their ages are in the range of
20− 60, and they have diversities in sex, physical structure,
and ethnicity. The properties of the music are obtained using
MIRtoolbox [26].

In order to obtain the ground truth of the heart rate, we
use one 3-lead ECG device [2] and one pulse oximeter [1].
Both of the devices measure and store heart rate data at a rate
of 1 sample per second. While an ECG is the most reliable
method to measure the heart rate, this is not always conve-
nient, as we have to attach three electrodes on to the bare
chest of the subject. Specially, for outdoor experiments, we
require another means to obtain the ground truth. We use a
fingertip pulse oximeter for this purpose, which is worn at
the index finger and the instantaneous heart rate is measured
and stored in its internal storage.
8.3.1 Heart Rate: Rise and Fall

It is a well-known fact that music has a profound effect
on our heart [22, 15]. We are not therefore trying to reprove
their relationship; rather, our objective is to study the effect
of music on smartphone users who are possibly mobile and
therefore at different levels of activities. We are interested
to know, e.g., how much is the effect of music in rising or
dropping one’s heart rate, how long it takes to make the effect
and whether these have any relation to the activity levels.
In Figure 11, we answer these questions from our empirical
observations. Figure 11(a) and 11(b) show the amount of
rise and fall in heart rates at different levels of activities –
both in presence and in absence of music. We obtain these
plots by first dividing the songs into two classes – one that
tends to raise the heart rate and the other that slows down the
heart. This distinction is made by computing the duration of
the largest rise or the largest fall of heart rates. We do this
after taking the 10 seconds moving average to rule out any
transient behavior in the instantaneous readings. We observe
that, the rise in heart rate is more in the presence of music
and also the fall of heart rate is less when music is playing.
The higher the activity level, the more effective it is in raising
the rate or resisting the rate to drop. However, this rise and
fall in heart rate is not instantaneous. Figure 11(c) shows
the cumulative distribution function (cdf) of the rise and fall
time of heart rates. A rapid growth in cdf happens when
the time is in between 25− 50 seconds. On average, the
time for heart rate to rise or fall by at least 10% is about
50 seconds. Figure 11(d) shows the amount of the rise and
fall. The longer a person listens to the music, the more is
its effect. For example, listening to an exciting music for 5
minutes raises the heart rate by 10 BPM, while a soothing
music for 5 minutes calms down the heart rate by 5 BPM on
average.
8.3.2 Effect of Tempo, Pitch, and Energy

Tempo, pitch and energy are three important features of
music that correlate to changes in heart rate [15, 14]. But
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Figure 11. Rise and fall of heart rates.
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Figure 12. The composite feature is more correlated to
heart rate change at all three activity levels.

their effect varies with activity levels. For example, tempo
is more effective in raising the heart rate when a person is
jogging or exercising in rhythm with the music. On the other
hand, pitch and energy have greater effect than tempo during
the low activity level. This is why we introduce the compos-
ite music feature u, which is a linear combination of these
three and is activity level specific. Figure 12 shows the cor-
relation of tempo, pitch, energy and the composite feature, u
with heart rate. We observe that, u is more correlated than
the other 3 features and is consistent over different activity
levels.

8.4 Evaluation of Heart Rate Measurement
We evaluate our heart rate measurement algorithm us-

ing two datasets. The first dataset contains the empirical
data that we collected from 37 smartphone users. The other
one is the MIT-BIH Arrhythmia dataset [18] which is the
most used dataset for evaluating heart rate measurement al-
gorithms, and contains data from 48 real patients. We also
compare our acoustic-based technique with an implementa-
tion of IR-based technique.
8.4.1 Performance on Empirical Dataset

Figure 13 shows the performance of our heart rate mea-
surement algorithm when applied to the empirical dataset.
Figure 13(a) shows the BPM errors of MusicalHeart when
compared to the baseline, i.e., pulse oximeter in most cases.
At each activity level, the error is similar regardless of the
presence of music, because, after filtering out any unwanted
signals, the algorithm handles the two cases in the same way.
But with higher levels of activities, the error tends to in-



crease. We investigated these data traces manually and found
that the reception of the audio signals were very poor in those
cases. This happened due to the loose contact of the ear-
phone after a long period of jogging and continued until the
user fit it well again. Overall, we observe an average error of
7.5 BPM when compared to the pulse oximeter.

Since there might be some differences between pulses
obtained from the ear and from the finger tip, it is desir-
able to see the correlation between the two besides com-
paring their absolute values. Furthermore, for our applica-
tion and in many medical applications, the rate of change of
heart rate is of more importance than the absolute value. Fig-
ure 13(b), Figure 13(c), and Figure 13(d) show the correla-
tions at different activity levels. The correlation coefficients
are 0.85, 0.84, and 0.75 respectively. At low and medium
levels, the readings are very close to the ideal (i.e. the diag-
onal line). But we see some non correlated horizontal and
vertical points during the high activity level. The horizon-
tal points correspond to the looseness of the earphone, and
the vertical points corresponds to the inability of the pulse
oximeter to report the pulse during high movements, as the
device is recommended to be used at rest for its best perfor-
mance.
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Figure 13. Performance of heart rate measurement algo-
rithm on empirical data.
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Figure 14. Performance of heart rate measurement on
MIT-BIH Arrythmia dataset.
8.4.2 Performance on MIT-BIH Arrythmia Dataset

As we do not know the actual heart condition of our par-
ticipants who possibly have sound health with good rhythmic
heart beats, we wanted to test our algorithm on the data that
are collected from actual patients. The MIT-BIH Arrythmia
dataset is a standard dataset that has been used in Biomedical
research community for decades. It contains raw ECG data

from 48 actual patients who have known heart diseases – an-
notated with various information such as the heart rate. We
use only the data that is obtained from ECG Lead II, since
the waveform of this lead closely resembles the recording
obtained from the ear. We slightly modify our algorithm to
detect heart beats from this ECG data and Figure 14 shows
the BPM errors for all 48 patient records. Our algorithm’s
average error is about 1.03 BPMs, and has zero errors for
most records. In some datasets we observe error as high as 7
beats. But we manually checked that these records contain so
wiggly waveforms that even human eyes cannot detect heart
beats in it due to the noise.
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Figure 15. Comparison of heart rate measurement with
an IR-based method.

8.4.3 Comparison with IR-based Technique
In this experiment, we compare the errors of our acoustic-

based solution with that of an IR-based one. To do so, we
design and implement a pair of Septimu-like earbuds that in-
cludes IR sensors. A microcontroller samples the IR-sensors
at 50 Hz and transmits the data to a PC using the Bluetooth.
We analyze the frequency spectrum of the received data and
identify the peaks which correspond to the heart beats. We
use a pulse-oximeter to measure the ground truth. Figure 15
compares the errors of the acoustic-based technique with that
of the IR-based technique at three activity levels. For each
level, we take 32 heart rate measurements and compute the
mean error. We observe that, the IR-based solution beats the
acoustic solution in all three levels. The mean error across
all levels of activity for the acoustic sensor is 7.5 BPM and
for the IR sensor, it is 2.69 BPM. Hence, this plot depicts
the trade-off between the acoustic solution’s multiple usages
and IR-based solution’s accuracy. For apps where this differ-
ence is important we would include an IR sensor in the ear
bud. We leave it as a future work to combine the two sensing
methods to achieve the best of both.

8.5 Evaluation of Activity Level Detection
We evaluate the accuracy of activity level detection al-

gorithm, in which, we use only the Septimu’s accelerometer
data. A total of 17 users participate in this experiment. We
conduct two rounds of experiments with them. First, each of
the users perform exactly 3 activities, corresponding to 3 ac-
tivity levels, from the list in Table 2. Each of these activities
lasts about 1− 5 minutes. For each person, we separately
train one classifier with 60% of the collected data, and run
cross validation on the remaining 40% to obtain the confu-
sion matrix of Table 6. We see that, the average accuracy
of the learner is almost perfect at all three levels, except for
a few cases where it gets confused by some L3 activities.
This has happened since some users tend to slow down after
jogging for a while, which is classified by the algorithm as
walking. Overall, the accuracy is 99.1%.



Predicted
L1 L2 L3

A
ct

ua
l L1 0.9998 0.0002 0

L2 0 0.9997 0.0003
L3 0 0.0280 0.9720

Table 6. Single activity.

Predicted
L1 L2 L3

A
ct

ua
l L1 0.989 0.011 0

L2 0 0.951 0.049
L3 0 0.037 0.963

Table 7. Activity sequence.
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Figure 16. The fitness of model gets better as the user
listens to more and more songs.

In the next round of experiments, the users per-
form a series of activities in sequence. The sequence,
{L1,L2,L3,L1,L3,L2,L1}, is chosen so that all six transitions
between any two activity levels happen. Each of the activi-
ties in the sequence is 60 seconds long. After the experiment,
all the collected data are classified using the same classifier
from the first set of experiments. This is done since in Mu-
sicalHeart, we first train the system for each activity level,
and then the trained classifier is used to recognize different
activities. The confusion matrix of this second experiment is
shown in Table 7. We see some confusion between {L1,L2}
and {L2,L3} during the transitions. But this is transient and
does not affect the music recommendation algorithm. Over-
all, the accuracy is about 96.8%.
8.6 Fitness of System Model

Modeling human physiological response with a first or-
der system may seem overly simplistic, but our empirical
study reveals that the goodness of fit of the model is pretty
accurate when the number of songs listened to by a user is
40 or more. Figure 16 plots the fitness of the model against
the number of songs. In our empirical dataset, the number
of songs any person has listened to is in between 20− 55.
Using the history of responses from 37 people, we compute
the model parameters A and B for each person. We measure
the goodness of the model by computing R2 = 1− var(y−ŷ)

var(y) ,
where y and ŷ are the actual and predicted responses of the
system. The closer the value is to 1, the better is the model.
9 Real Deployment

We deploy MusicalHeart in two real world scenarios–
similar to the use cases that we described earlier in the paper.
Four volunteers participate in each of the experiments. Two
of them are male and two are female. All four participants
are healthy and they belong to the age group of 21−30. The
participants are instructed to feel the music and to stay in
rhythm of the music.
9.1 Goal Directed Aerobics

The goal of this experiment is to demonstrate that Mu-
sicalHeart measures heart rate, detects activity levels, and
suggests appropriate songs while a person is exercising. The
20 min long cardio program that our participants take part
in, is described in Table 8. The program mentions the dura-
tion, target intensity, and the required change in pace. Prior

Time Intensity Pace
5 min 60%-70% Walk at a comfortable pace to warm up.
3 min 70%-80% Increase speed a few increments until working harder

than the warm up pace. This is the baseline.
2 min 80%-90% Increase speed again until working slightly harder.
3 min 70%-80% Decrease speed back to baseline.
2 min 80%-90% Increase speed once again until working slightly

harder than baseline.
5 min 60%-70% Decrease speed back to a comfortable level.

Table 8. The cardio exercise program that our partici-
pants take part in during the experiment.

to the experiment, we measure the resting heart rate and es-
timate the maximum heart rate of each participant – which
are used to calculate the target heart rate using the equation
in Section 3.3. The controller parameters at each of the 3 ac-
tivity levels of a participant are estimated from the history of
at least 40 previous responses of that person. This informa-
tion is used by the controller to suggest appropriate music in
run-time.

Figure 17 shows the variations in heart rate (normalized
to intensity) during jogging for all 4 participants. The stairs
represent the desired intensity, the curved lines represent the
achieved intensity, and the arrows represent the activation
of the control input. An upward (downward) arrow denotes
a positive (negative) control signal corresponding to a sug-
gested song that helps to rise (fall) the current heart rate.
The value of control signal, u is used as the search-key in
the music database to find a matching song.

Figure 18 shows the variations in accelerometer readings
corresponding to Figure 17. The curved lines represent the
standard deviations of accelerometer readings. The detected
activity level of a person is computed from these readings us-
ing the person specific thresholds as described in Section 6.1.
The stairs represent the boundary between the detected ac-
tivity levels L2 and L3. For example, according to the cardio
program in Table 8, all 4 participant should be in L2 for the
first 5 min, then in L3 for the next 10 min, and finally in L2
during the last 5 min. The detected activity levels accurately
match the desired levels for all 4 participants, except for the
first male person (Male 1) who seems to have slowed down
a little at some point during his 7−8 min interval.

We illustrate the first control signal activation event of
the first male participant as an example. The person is at the
intensity level of 38%, while his desired level is 65%. From
the knowledge of his resting and maximum heart rates, 70
and 170 BPM, these two intensity levels correspond to 108
and 135 BPM, respectively. Figure 18(a) shows that he is at
activity level L2 at that moment. Using the control parame-
ters at activity level L2 of this person, α1 = −0.0196, α2 =
−69.8587, α3 = 0.0213, A = 0.92 and B = 1.13, we ob-
tain, u = (135− 1.13× 108)/0.92 = 14.1. The database of
music is then searched for an appropriate music that has the
composite feature value of 14.1. Using this control approach,
overall, the mean deviation in intensity levels for the 4 partic-
ipants are: 11.4%, 13.2%, 12.1%, and 11.8%, respectively.
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Figure 17. The desired intensity, achieved intensity and
activation of control signals are shown.
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Figure 18. Standard deviation of accelerometer data and
boundary between activity levels L2 and L3 are shown.

9.2 Music Recommendation via Bio-feedback
and Collaboration

The goal of this experiment is to demonstrate Musical-
Heart’s bio-feedback based rating and collaborative recom-
mendation features. We perform a 3-day long experiment
with 4 users, in which, each user uses MusicalHeart app
while riding on a vehicle (e.g., bus or car) and looks for heart
soothing songs. The server initially has the history of at least
40 responses from the first two users, while the other two
users are new. We expect that the more a user uses Musical-
Heart, the better is the quality of music recommendation.
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Figure 19. (a) The automated ratings for the new users
are increased. (b) The reduction of u indicates increased
accuracy of soothing music suggestion.

Figure 19(a) shows the automated ratings obtained from
4 users over a 3-day period. The first two users are regular

users of MusicalHeart and the system therefore consistently
suggests high rated songs to them with average ratings of
3.56 and 3.78. For the new users of the system, initially,
the quality of suggestion is in the range of 2.32− 2.79, but
the more they use the app, the better the quality of sugges-
tion gets, i.e., 3.42−3.52. The improvement happens due to
the learning and collaborative nature of the recommendation
algorithm. Figure 19(b) shows the value of the composite
feature, u of the suggested songs on each day. The compos-
ite feature being highly correlated to raising the heart rate,
the less its value, the better it is in calming down the heart.
We see that the average value of u gets lower on each day,
which indicates that MusicalHeart is indeed suggesting heart
soothing song to its users. Note that, the values of u in this
experiment are not comparable to those in the previous ex-
periment since all 4 users are in activity level L1 which is
different.

10 Related Works
Music has been shown to improve sleep quality [19, 25],

cope with stress [24], improve performance [35, 14], influ-
ence brain activity [21], and increase motor coordination [8].
However, we only consider the response of the heart to mu-
sic. Studies have shown that exercise intensity and tempo
are correlated linearly [22], and relaxing music (e.g., Bach,
Vivaldi, Mozart) result in reduction of heart rate and its vari-
ability [15]. We perform a similar study, but the difference is
ours involves smartphone users who are mobile and whose
activity levels change.

The smartphones apps that measure heart rate use 3 basic
principles: camera, microphone, and accelerometer based.
Camera based apps (Instant Heart Rate, PulsePhone) de-
tect pulses by measuring the changes in the intensity of
light passing through the finger. Microphone based apps
(Heart Monitor, iRunXtream) require the user to hold the
microphone directly over heart, or neck, or wrist to detect
beats. Accelerometer bases techniques (iHeart) are indirect,
in which, the user measure his pulse with one hand (e.g. from
neck) and taps or shakes the phone with other hand in the
rhythm of the heart beats. Our approach in MusicalHeart is
microphone based, but the difference is, in all of the existing
apps, the heart rate monitoring requires active engagement of
the user, whereas MusicalHeart obtain heart beats from the
ear without interrupting the user’s music listening activity.
Other approaches that detect heart beats from the ear [33, 10]
use a combination of infrared LED and accelerometers.

Several works are related to our activity detection algo-
rithm [34, 36, 11, 13, 7, 28, 6]. [34] concludes that it is prac-
tical to attribute various activities into different categories
which is similar to our activity levels. [36] describes an
accelerometer based activity classification algorithm for de-
termining whether or not the user is riding in a vehicle, or
in a bus, or another vehicle for cooperative transit tracking.
In our work, we only require to detect whether someone is
indoors vs. outdoors, and his current speed. [11] presents
a mobile sensing platform to recognize various activities in-
cluding walking, running and cycling. [28] presents a wear-
able platform for motion analysis of patients being treated
for neuromotor disorders. [13] detects user’s caloric ex-



penditure via sensor data from a mobile phone worn on the
hip. But these works require the user to wear sensors at spe-
cific positions of the body. In our case, the user naturally
wears the earphone on the ear. [7] performs activity recogni-
tion from user-annotated acceleration data, which is different
than our unsupervised learning. [6] presents a high perfor-
mance wireless platform to capture human body motion. In
our work, we do not require such a high speed communica-
tion to the server.

Existing approaches for automatic music recommenda-
tion are: using one or more seed songs [32, 16], retrieve
similar music by matching the tempo [37], and learning the
habit (e.g., music genre, preferences, or time of day) of the
user [27, 5]. None of these consider any physiological ef-
fects of music on the user. Physiological information, such
as gait and heart rate, have been considered in [30, 12, 29, 9].
But the downside of these approaches are, first, the user has
to use a separate device (e.g. ECG or pulse oximeter) which
is an inconvenience, second, the music recommendation is
based on an overly simplistic and general rule of thumbs,
i.e., to suggest music with a matching tempo, which is not
personalized, and third, the recommendation is not situation
aware and mostly targeted to a single scenario of jogging.
11 Conclusion

In this paper, we introduce Septimu, a wearable sensing
platform consisting of a pair of sensor equipped earphones,
and as an application of it, we design and implement, Musi-
calHeart which is a novel bio-feedback based, context aware,
automated music recommendation system for smartphones.
We provide empirical evidence that the system is capable of
detecting heart rate from the ear which is 75%− 85% cor-
related to the ground truth and has an average error of 7.5
BPM. The accuracy of activity level inference of the system
is on average 96.8%. We deploy MusicalHeart in two real
world scenarios and show that it helps the user in achieving
a desired exercising intensity with an average error of less
than 12.2%, and its quality of music recommendation im-
proves over time.
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